
django-fabric Documentation
Release 1.5.0

Rolf Erik Lekang

July 18, 2015

Contents

1 Quickstart 1
1.1 Installation . 1
1.2 Usage . 1

2 Testing 3
2.1 The testing mixin . 3

3 Notifications 5
3.1 Built in notification mixins . 5
3.2 Build your own notification mixin . 6

4 Advanced usage 7
4.1 Need to use custom commands on the server? . 7

5 Quickstart 9
5.1 Installation . 9
5.2 Usage . 9

i

ii

CHAPTER 1

Quickstart

django-fabric is written to make writing fabfiles for django projects easier and faster. It contains the basic stuff one
would expect from a django setup with git and virtualenv. The code expects the project to have a certain structure as
seen below. It is possible to customize the activation of the virtualenvironment. .. code-block:

project-dir/
venv/ # virtualenv
project-package/
manage.py
fabfile.py

1.1 Installation

Run pip install django-fabric

1.2 Usage

There is two options to get get a basic setup, both will make you able to run fab deploy:prod and fab test.

1.2.1 Init script

There is a init script that will guide you through the generation of a basic fabfile that utilises django-fabric. Run it with
the command .. code-block:

django-fabric-init

1.2.2 Basic manual setup

Create a fabfile.py in your project directory. You can see example of a fabfile below. If you run into problems
with settings where fabric cannot locate settings add sys.path.append(os.path.dirname(__file__))
to your fabfile.

Here is an example of an fabfile .. code-block:

1

django-fabric Documentation, Release 1.5.0

from fabric.decorators import task
from fabric.state import env
from django_fabric import App

env.user = 'web'
env.hosts = ['server1.example.com']

site = App(
project_paths={

'prod': '/var/www/example_site',
},
urls={

'prod': 'http://example.com'
},
restart_command={

'prod': 'restart prod'
},
project_package='example',
test_settings='example.settings.test',

)

deploy = task(site.deploy)
test = task(site.test)

2 Chapter 1. Quickstart

CHAPTER 2

Testing

We all get a little nervous the first time we run a deploy script on production. Well, don’t do it without proper testing
first. django-fabric is used as deployment tool in several organisations. However, you should feel a lot more safe that
you configured it correctly if you test it first.

One way to test it is to run a deployment of a staging environment before you deploy to your production environment.

2.1 The testing mixin

There is one way to do a no-operation run of the deployment, wich mean that every command that will be ran on your
servers will be printed instead. This will give you a way to visually confirm the shell commands before running them
on a server. The example below shows how to use the mixin.

from fabric.contrib import django

from django_fabric import App
from django_fabric.test_helpers import TestMixin

class TestApp(TestMixin, App):
project_package = 'package'
project_paths = {

'prod': 'path-to-prod'
}
restart_command = {

'prod': 'restart prod'
}

3

django-fabric Documentation, Release 1.5.0

4 Chapter 2. Testing

CHAPTER 3

Notifications

It is always great to notify your team that you are deploying. django-fabric makes it easy to do that automatically.

3.1 Built in notification mixins

There are some built in mixins. To use them add them to your class in your fabfile and make sure you add the attributes
necessary. They should have defaults for values that are not used to authenticate you with the given service.

class django_fabric.notifications.IrcNotifyMixin
A mixin that notifies given channels on irc.

SERVER
Default: ’irc.freenode.org’

The irc server you want to connect to.

PORT
Default: 6667

The port of the irc server.

NICK
Default: ’django-fabric’

The nick that should appear on irc when the notification is sent.

ROOMS
Default: []

List of rooms to notify, should be a list of strings.

TIMEOUT
Default: 25

The time in seconds before the irc connection times out.

class django_fabric.notifications.SlackNotifyMixin
A mixin that notifies a channel on the Slack. Requires to set the attribute URL.

CHANNEL
Default: ’#general’

The channel to post the notification in.

NICK
Default: ’django-fabric’

The nick that should appear in Slack when the notification is sent.

URL
The Slack POST URL. Can be found at slack.com/services/new/incoming-webhook.

5

http://slack.com/
http://slack.com/services/new/incoming-webhook

django-fabric Documentation, Release 1.5.0

class django_fabric.notifications.HipChatNotifyMixin
A mixin that notifies a room on HipChat. Requires to set the attribute ROOM and HIPCHAT_TOKEN.

ROOM
The room to post the notification in.

NOTIFY
Default: False

Whether or not this message should trigger a notification for people in the room (change the tab color, play
a sound, etc).

COLOR
Default: ’yellow’

Background color for message. Valid values: yellow, red, green, purple, gray, random

3.2 Build your own notification mixin

If we do not support your chat service, bot or whatever you want to notify it should not be a problem. It is pretty
easy to create your own notification mixin. Just create a class that inherit from the Notifier class and overwrite the
methods you need to customize. Remember you must at least override send_notification. If you think your notification
mixin can be useful for others a pull-request is appreciated.

class django_fabric.notifications.Notifier

notification_message_context(self, instance):
Provides the context used in pre_deploy_notify() and post_deploy_notify().

pre_deploy_notify(self, instance):
The method that sends notification before deployment. This should generate the message and call
send_notification.

post_deploy_notify(self, instance):
The method that sends notification after deployment. This should generate the message and call
send_notification.

send_notification(self, message):
This method actually sends the notification. The logic that talks to the service should be put here. This
method needs to be implemented in the subclass or it will raise a NotImplementedError.

6 Chapter 3. Notifications

http://hipchat.com/

CHAPTER 4

Advanced usage

To be able to use different mixins or override som methods in the App class it is necessary to subclass it. If you use
this approach in your fabfile it is possible to move your values out of the init call as seen in the example below, if you
want to.:

from fabric.decorators import task
from fabric.state import env
from django_fabric import App

env.user = 'web'
env.hosts = ['server1.example.com']

class Site(App):
project_package = 'package'
project_paths = {

'prod': 'path-to-prod'
}
restart_command = {

'prod': 'restart prod'
}

site = Site()

deploy = task(site.deploy)
test = task(site.test)

4.1 Need to use custom commands on the server?

Need to su to a specific user or something similar. No problem! Just override the method App.run(command),
but there are a few things to remember.

• Add with quiet(): context manager around your code if you want to hide the output from fabric and only
show the output from django-fabric.

• Return the fabric run command. This is used to determine the output of the command several places.

7

django-fabric Documentation, Release 1.5.0

8 Chapter 4. Advanced usage

CHAPTER 5

Quickstart

django-fabric is written to make writing fabfiles for django projects easier and faster. It contains the basic stuff one
would expect from a django setup with git and virtualenv. The code expects the project to have a certain structure as
seen below. It is possible to customize the activation of the virtualenvironment. .. code-block:

project-dir/
venv/ # virtualenv
project-package/
manage.py
fabfile.py

5.1 Installation

Run pip install django-fabric

5.2 Usage

There is two options to get get a basic setup, both will make you able to run fab deploy:prod and fab test.

5.2.1 Init script

There is a init script that will guide you through the generation of a basic fabfile that utilises django-fabric. Run it with
the command .. code-block:

django-fabric-init

5.2.2 Basic manual setup

Create a fabfile.py in your project directory. You can see example of a fabfile below. If you run into problems
with settings where fabric cannot locate settings add sys.path.append(os.path.dirname(__file__))
to your fabfile.

Here is an example of an fabfile .. code-block:

9

django-fabric Documentation, Release 1.5.0

from fabric.decorators import task
from fabric.state import env
from django_fabric import App

env.user = 'web'
env.hosts = ['server1.example.com']

site = App(
project_paths={

'prod': '/var/www/example_site',
},
urls={

'prod': 'http://example.com'
},
restart_command={

'prod': 'restart prod'
},
project_package='example',
test_settings='example.settings.test',

)

deploy = task(site.deploy)
test = task(site.test)

10 Chapter 5. Quickstart

Index

C
CHANNEL (django_fabric.notifications.SlackNotifyMixin

attribute), 5
COLOR (django_fabric.notifications.HipChatNotifyMixin

attribute), 6

H
HipChatNotifyMixin (class in

django_fabric.notifications), 6

I
IrcNotifyMixin (class in django_fabric.notifications), 5

N
NICK (django_fabric.notifications.IrcNotifyMixin

attribute), 5
NICK (django_fabric.notifications.SlackNotifyMixin at-

tribute), 5
Notifier (class in django_fabric.notifications), 6
NOTIFY (django_fabric.notifications.HipChatNotifyMixin

attribute), 6

P
PORT (django_fabric.notifications.IrcNotifyMixin

attribute), 5

R
ROOM (django_fabric.notifications.HipChatNotifyMixin

attribute), 6
ROOMS (django_fabric.notifications.IrcNotifyMixin at-

tribute), 5

S
SERVER (django_fabric.notifications.IrcNotifyMixin at-

tribute), 5
SlackNotifyMixin (class in django_fabric.notifications), 5

T
TIMEOUT (django_fabric.notifications.IrcNotifyMixin

attribute), 5

U
URL (django_fabric.notifications.SlackNotifyMixin at-

tribute), 5

11

	Quickstart
	Installation
	Usage

	Testing
	The testing mixin

	Notifications
	Built in notification mixins
	Build your own notification mixin

	Advanced usage
	Need to use custom commands on the server?

	Quickstart
	Installation
	Usage

